
Previous Article
On the boundedness of solutions of the equation $u''+(1+f(t))u=0$
 DCDS Home
 This Issue

Next Article
Preimage variational principle for bundle random dynamical systems
Dynamic materials for an optimal design problem under the twodimensional wave equation
1.  Departamento de Matemáticas, ETSI Industriales, Universidad de CastillaLa Mancha, 13071 Ciudad Real, Spain 
2.  E.T.S. Ingenieros Industriales, Universidad de Castilla La Mancha 
[1] 
Pablo Pedregal. Fully explicit quasiconvexification of the meansquare deviation of the gradient of the state in optimal design. Electronic Research Announcements, 2001, 7: 7278. 
[2] 
José C. Bellido, Pablo Pedregal. Explicit quasiconvexification for some cost functionals depending on derivatives of the state in optimal designing. Discrete & Continuous Dynamical Systems, 2002, 8 (4) : 967982. doi: 10.3934/dcds.2002.8.967 
[3] 
Hyeon Je Cho, Ganguk Hwang. Optimal design for dynamic spectrum access in cognitive radio networks under Rayleigh fading. Journal of Industrial & Management Optimization, 2012, 8 (4) : 821840. doi: 10.3934/jimo.2012.8.821 
[4] 
Alice Fiaschi. Rateindependent phase transitions in elastic materials: A Youngmeasure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257298. doi: 10.3934/nhm.2010.5.257 
[5] 
Alice Fiaschi. Youngmeasure quasistatic damage evolution: The nonconvex and the brittle cases. Discrete & Continuous Dynamical Systems  S, 2013, 6 (1) : 1742. doi: 10.3934/dcdss.2013.6.17 
[6] 
Yan Chen, Kewei Zhang. Young measure solutions of the twodimensional PeronaMalik equation in image processing. Communications on Pure & Applied Analysis, 2006, 5 (3) : 617637. doi: 10.3934/cpaa.2006.5.617 
[7] 
H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 9931010. doi: 10.3934/mbe.2018044 
[8] 
K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133148. doi: 10.3934/jimo.2005.1.133 
[9] 
Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 8591. doi: 10.3934/proc.2007.2007.85 
[10] 
Xueling Zhou, Bingo WingKuen Ling, Hai Huyen Dam, KokLay Teo. Optimal design of window functions for filter window bank. Journal of Industrial & Management Optimization, 2021, 17 (3) : 11191145. doi: 10.3934/jimo.2020014 
[11] 
Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936944. doi: 10.3934/proc.2015.0936 
[12] 
Wei Xu, Liying Yu, GuiHua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2020, 16 (5) : 25312549. doi: 10.3934/jimo.2019068 
[13] 
Bin Li, Kok Lay Teo, ChengChew Lim, Guang Ren Duan. An optimal PID controller design for nonlinear constrained optimal control problems. Discrete & Continuous Dynamical Systems  B, 2011, 16 (4) : 11011117. doi: 10.3934/dcdsb.2011.16.1101 
[14] 
Tomasz R. Bielecki, Igor Cialenco, Marcin Pitera. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LMmeasure perspective. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 3. doi: 10.1186/s4154601700129 
[15] 
Leszek Gasiński, Nikolaos S. Papageorgiou. Relaxation of optimal control problems driven by nonlinear evolution equations. Evolution Equations & Control Theory, 2020, 9 (4) : 10271040. doi: 10.3934/eect.2020050 
[16] 
Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 14431461. doi: 10.3934/dcds.2011.29.1443 
[17] 
Lars Grüne, Manuela Sigurani. Numerical eventbased ISS controller design via a dynamic game approach. Journal of Computational Dynamics, 2015, 2 (1) : 6581. doi: 10.3934/jcd.2015.2.65 
[18] 
Stefano Luzzatto, Marks Ruziboev. Young towers for product systems. Discrete & Continuous Dynamical Systems, 2016, 36 (3) : 14651491. doi: 10.3934/dcds.2016.36.1465 
[19] 
Alexis De Vos, Yvan Van Rentergem. Young subgroups for reversible computers. Advances in Mathematics of Communications, 2008, 2 (2) : 183200. doi: 10.3934/amc.2008.2.183 
[20] 
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial & Management Optimization, 2008, 4 (1) : 115. doi: 10.3934/jimo.2008.4.1 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]